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Abstract – The amount of the data storage in signal processing
systems, whose behavior is described by loop-organized algorith-
mic specifications, has an important impact on the overall energy
consumption, chip area, as well as system performance. This paper
presents a non-scalar approach for computing the minimum stor-
age requirements in high-level procedural specifications, where the
main data structures are multi-dimensional arrays. This methodol-
ogy uses both algebraic techniques specific to the data-flow anal-
ysis used in modern compilers and, also, more recent advances in
the theory of polyhedra. In contrast with all the previous works
which are only estimation methods, this approach can perform the
exact computation of the minimum data storage even for applica-
tions with numerous loop nests and complex array references.

Keywords: memory management, memory size computation, lin-
early bounded lattice, behavioral specification, array reference.

1. INTRODUCTION

In many signal processing systems, particularly in the multimedia
and telecommunication domains, data transfer and storage have a
significant impact on both the system performance and the major
cost parameters – power consumption and chip area. During the
system development process, the designer must often focus first on
the exploration of the memory subsystem in order to achieve a cost
optimized product.

The behavior of these targeted VLSI systems, synthesized to ex-
ecute mainly data-dominant applications, is described in a high-
level programming language, where the code is typically organized
in sequences of loop nests having as boundaries (usually affine)
functions of loop iterators, conditional instructions where the argu-
ments may be data-dependent and/or data-independent (relational
and/or logic expressions of affine functions of loop iterators). The
data structures are multi-dimensional arrays whose indexes in the
code are affine functions of surrounding loop iterators. The class
of specifications with these characteristics are often called affine
specifications [3]. An illustrative example of a code in this class is
shown in Fig. 1.

The problem addressed in this paper is how to compute the min-
imum amount of memory locations necessary to store the signals
during the execution of, e.g., an image processing algorithm, as-
suming any scalar (array element) must be stored only during its
lifetime – from the moment when it is produced till it is used last
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time. For instance, the total number of array elements in the code
from Fig. 1 is 302,498; but due to the fact that scalars having dis-
joint lifetimes can share the same memory location, the amount of
storage can be much smaller than the total number of scalars. Ac-
tually, only 5,292 memory locations are necessary (see Section 2).

This problem has been firstly addressed at scalar level in regis-
ter transfer-level (RTL) programs. Good overviews of these tech-
niques can be found in [4, 3]. Common to all scalar-based storage
estimation techniques is that the number of scalars is drastically
limited. When multi-dimensional arrays are present in the algo-
rithmic specification of the targeted applications, the computation
times of these techniques increase dramatically if the arrays are
flattened and each array element is treated like a separate scalar.

To overcome the shortcomings of the scalar techniques, several
works proposed different non-scalar computation models for the
estimation of the storage requirements of high-level algorithmic
specifications where the code structure was loop-based and multi-
dimensional arrays were present. These estimation approaches can
be basically split in two categories: those requiring a fully-fixed ex-
ecution ordering, and those assuming non-procedural specification
where the execution ordering is still not (completely) fixed. The
techniques falling in the first category will be addressed first.

Verbauwhede et al. consider a production axis for each array to
model the relative production and consumption time (or date) of
the individual array accesses [9]. The difference between these
two dates equals the number of array elements produced between
them, while the maximum difference gives the storage requirement
for the considered array. The time differences are computed based
on an integer linear programming model. Zhao and Malik devel-
oped a technique based on live variable analysis and integer point
counting for intersection/union of mappings of parametrized poly-
topes [10]. They prove that it is sufficient to find the number of live
variables for one statement in each innermost loop of a loop nest in
order to get an estimate of the minimum memory size. Ramanujam
et al. use for each array a reference window containing at any mo-
ment during execution the array elements alive (that have already
been referenced and will also be referenced in the future) [7]. The
maximal window size gives the storage requirement for the corre-
sponding array. Treating the arrays separately, this technique (and
[9], as well) does not consider the possibility of inter-array in-place
mapping [3].

In contrast to the non-scalar methods described so far, the mem-
ory estimation technique presented in [1] does not take execution
ordering into account, allowing any ordering not prohibited by data
dependencies. The estimation technique described in [5] assumes
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        T[0] = 0 ;                                 //  A[10][529] : input
        for ( j=16 ; j<=512 ; j++)                          // The 1st loop nest
        { S[0][j-16][0] = 0 ;                                     //  (1)
           for ( k=0 ; k<=8 ; k++)
              for ( i=j-16 ; i<=j+16 ; i++)                   //  (2) is below
                 S[0][j-16][33*k+i-j+17] = A[4][j] - A[k][i] + S[0][j-16][33*k+i-j+16] ;
           T[j-15] = S[0][j-16][297] + T[j-16] ;       //  (3)
        }
        for( j=16 ; j<=512 ; j++)                           // The 2nd loop nest
        { S[1][j-16][0] = 0 ;
           for( k=1 ; k<=9 ; k++)
              for( i=j-16 ; i<=j+16 ; i++)
                 S[1][j-16][33*k+i-j-16] = A[5][j] - A[k][i] + S[1][j-16][33*k+i-j-17] ;
           T[j+482] = S[1][j-16][297] + T[j+481] ;
        }
        out = T[994];                          // out : output

Figure 1: Illustrative example of affine specification.

a partially fixed execution ordering. The authors employ a data de-
pendence analysis similar to [1], their major improvement being to
add the capability of taking into account available execution order-
ing information, based mainly on loop interchanges.

Different from the previous works which are only approximate
methods, this paper presents a non-scalar technique for comput-
ing exactly the minimum memory size in multi-dimensional signal
processing algorithms, when the specifications are procedural, i.e.,
the execution ordering is induced by the loop structure and it is thus
fixed (like in several previous works [9, 10, 7]). This assumption is
based on the fact that in present industrial design, the design entry
usually includes a full fixation of the execution ordering. Even if
this is not the case, the designer can still explore different algorith-
mic specifications functionally equivalent.

The rest of the paper is organized as follows. Section 2 – the
core of the paper – introduces the basic mathematical concepts and
presents the flow of memory size computation algorithm. Section 3
discusses implementation aspects and experimental results. Sec-
tion 4 summarizes the conclusions of this research.

2. COMPUTATION OF THE MINIMUM DATA STORAGE

A polyhedron is a set of points P ⊂ �n satisfying a finite set
of linear inequalities: P = { x ∈ �n | A · x ≥ b }, where
A∈ �m×n and b∈ �m. If P is a bounded set, then P is called a
polytope. If x ∈ Zn, then P is called a Z-polyhedron/polytope.

Each array referenceM [x1(i1, . . . , in)] · · · [xm(i1, . . . , in)] of
an m-dimensional signal M , in the scope of a nest of n loops hav-
ing the iterators i1, . . . , in , is characterized by an iterator space
and an index (or array) space. The iterator space signifies the set
of all iterator vectors i = (i1, . . . , in) ∈ Zn in the scope of the
array reference. The index (or array) space is the set of all index
vectors x = (x1, . . . , xm) ∈ Zm of the array reference. When
the indices of an array reference are linear mappings with integer
coefficients of the loop iterators, the index space consists of one
or several lattices [8] linearly bounded, i.e., the image of an affine
vector function (or mapping) over the iteratorZ-polytopeA·i ≥ b:

{ x = T · i+ u ∈ Zm | A · i ≥ b , i ∈ Zn} (1)

where x∈ Zm is the index vector of the m-dimensional signal and
i∈ Zn is an n-dimensional iterator vector.
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Figure 2: Decomposition of the index space of signal A into dis-
joint lattices; the arcs in the graph show inclusion relations.

Example for (i = 0; i ≤ 2; i++)
for (j = 0; j ≤ 3; j++) · · ·M [3i+j][5i+2j] · · ·
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where x and y are the indices of the array reference.
Once these concepts clarified, the memory size computation al-

gorithm will be explained and illustrated with the code in Fig. 1.

Step 1 Extract the array references from the given algorithmic
specification and decompose the array references for every indexed
signal into disjoint linearly bounded lattices.

Figure 2 shows the result of this decomposition for the 2-
dimensional signal A in the illustrative example. The graph dis-
plays the inclusion relations (arcs) between the lattices of A
(nodes). The 4 “bold” nodes are the 4 array references of signal A
in the code (see Fig. 1). For instance, the node A1 represents the
lattice of A[k][i] in the first loop nest. The nodes are also labeled
with the size of the corresponding lattice – that is, the number of
points having integer coordinates in those sets. The inclusion graph
is gradually constructed by partitioning analytically the (four) array
references using lattice intersections and differences. While the in-
tersection of two non-disjoint lattices is a lattice as well (e.g., [1]),
the difference operation is not closed. Denoting A1 ∩ A2 = A3,
A1−A3 andA2−A3 are also lattices (denotedA4, A5 in Fig. 2).
However, the difference A3 − A10 is not a lattice due to the non-
convexity of this set.

At the end of the decomposition, the nodes without any incident
arc represent non-overlapping lattices. Every array reference in the
code is now either a disjoint lattice itself (like A10 and A11), or a
union of disjoint lattices (e.g., A1 = A4 ∪A3 = A4 ∪ ⋃11

i=6 Ai).

Step 2 Determine the data memory size at the boundaries between
the blocks of code.

The algorithmic specification is, basically, a sequence of nested
loops. (Single instructions outside nested loops are actually nests
of depth zero.) We refer to these loop nests as blocks of code.
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After the decomposition of the array references in the specifica-
tion code, for each disjoint lattice it is determined the block where
it is created (i.e., produced) and the block where it is used as an
operand for the last time (i.e., consumed). Based on this infor-
mation, the memory size between the blocks can be determined
exactly, since the storage requirement of each lattice can be com-
puted exactly. For instance, the data storage at the beginning of
the code in Fig. 1 is size(

⋃11
i=4 Ai) = 5, 290 since all the ar-

ray elements of A are necessary for the code execution. However,
after the execution of the first loop nest, the storage requirement
decreases since the lattice A4 of signal A is no longer necessary in
the second loop nest. The memory size after the first loop nest is
size(

⋃11
i=5Ai) + 1 = 4, 762 , where 1 stands for T [497] produced

in the last loop iteration.

Step 3 Find the maximum storage requirement inside each block.

Step 3.1 Determine the characteristic memory variation for each
assignment instruction in the current block of code.

Take, for instance, the first loop nest from the illustrative exam-
ple in Fig. 1. The assignment (1) produces at each iteration a new
element S[0][j − 16][0] of the array S. We say that the charac-
teristic memory variation of this assignment is +1 since each time
the instruction is executed the memory size will increase by one
location. Similarly, the assignment (3) has a characteristic memory
variation of -1 (i.e., +1-1-1) since at each iteration one scalar signal
T [j−15] is produced and two other scalars – S[0][j−16][297] and
T [j − 16] – are consumed (used for the last time).

In general, the characteristic memory variation of an assignment
is easily computed: a produced array reference having a bijective
vector function has a contribution of +1; an entirely consumed ar-
ray reference having a one-to-one mapping has a contribution of
-1; an array reference having no component lattice consumed in
the block has a zero contribution, independent of its mapping. The
rest of the array references in the assignment are ignored for the
time being, being dealt with at Step 3.3. For instance, at assign-
ment (2), the two array references S bring a contribution of +1 and
-1, respectively; the array reference A[4][j] brings a zero contri-
bution since it contains only the lattice A10 (see Fig. 2) which is
not consumed in this block (A10 is also covered by the array ref-
erence A[k][i] from the second loop nest, so it will be consumed
there). Only part of the array reference A[k][i] is consumed in this
block, that is, the lattice A4. Therefore, the characteristic memory
variation of assignment (2) is zero, meaning that the typical varia-
tion is of zero locations; however, for some iterations the memory
variation may be -1 due to the consumption of the elements of A4
covered by the array reference A[k][i].

Step 3.2 Check whether the maximum storage requirement could
occur in the current block or not.

The memory size at the beginning of the first loop nest is 5,291
(and this is the largest value among the memory sizes at the block
boundaries). The maximum possible memory increase is due only
to assignment (1), having a characteristic memory variation of +1,
executed 497 times. So, theoretically, the memory size could reach
(but not exceed) the value 5,291+497 (although it will not). The
maximum memory size could occur in this block, so its analysis
should continue.

On the other hand, the memory size at the beginning of the sec-
ond loop nest is 4,762. The memory size within that block could
reach the value 4,762+497=5,259 which is already smaller than
5,291. It follows that the maximum storage requirement cannot
occur in the second loop nest, so this block can be skipped from fur-
ther analysis. This code pruning enhances the running times, con-
centrating the analysis on those portions of code where the memory
increase is likely to happen.

Step 3.3 Compute the maximum (lexicographic) iterator vectors
of the lattice elements consumed in the block, but of only those not
covered by the array references that contributed to the characteris-
tic memory variations (see Step 3.1) of the assignment instructions.

Distinct iterator vectors can access a same array element,
whereas we are only interested in that unique iterator vector ac-
cessing the array element for the last time. This is what we call the
maximum (lexicographic) iterator vector.
Definition Let i = [i1, . . . , in]T and j = [j1, . . . , jn]T be two
iterator vectors in the scope of n nested loops, which may be as-
sumed “normalized” (i.e., all the iterators are increasing with the
step 1). The iterator vector j is larger lexicographically than i
(written j 
 i) if (j1 > i1), or (j1 = i1 and j2 > i2), . . . or
(j1 = i1, . . . , jn−1 = in−1, and jn > in). The maximum itera-
tor vector from a set of such vectors is the largest vector in the set
relative to the lexicographic order.

Example for (i = 0; i ≤ 5; i++)
for (j = 0; j ≤ 5; j + +)
for (k = 0; k ≤ 5; k++) · · ·M [i−3j+2k] · · ·

The maximum iterator vector such that the element, say, M [5]
is accessed is [i j k]Tmax = [5 2 3]

T .
The algorithm computing these vectors is briefly presented.

Given an array reference M [x1(i1, . . . , in)] · · · [xm(i1, . . . , in)]
in the scope of the iterator polytope A·[i1 . . . in]T ≥ b and an
array element M [x01] · · · [x0m]:

1. Solve the Diophantine system [8] xj(i1, . . . , in) = x0j , j =
1, . . . ,m. Let its solution (assuming it does exist) be i=V·t+u.

2. Bring matrix V to a reduced Hermite form [8] by post-
multiplying it with a unimodular matrix S (less a possible row per-

mutation): V′ = V · S =
[
V1

V2

]
, where matrix V1 is lower-

triangular, with positive diagonal elements.
3. Project the new Z-polytope A(V′t′ + u) ≥ b on the first

coordinate axis and find the maximum coordinate t ′1 ∈ Z in the
“exact shadow” [6]. Replace its value in the Z-polytope and repeat
this operation, finding t′2, t

′
3, . . . . Then,

imax = V′t′ + u, where t’ is the vector of the t′k values. �

From Fig. 2,A4 is the only lattice consumed in the first loop nest
satisfying the conditions of Step 3.3. It is part of the array reference
A[k][i], the elements of A4 having the indexes in the set {x =
0 , 0 ≤ y ≤ 528}. The maximum iterator vectors of these elements
indicate the iterations when they are consumed. For instance, the
element A[0][0] is consumed in the iteration [j k i]T = [16 0 0]T ;
A[0][1] is consumed in [17 0 1]T , while A[0][528] is consumed
in the iteration [512 0 528]T . In general, the maximum iterator
vectors of A4’s elements are: [j k i]Tmax = [t + 16 0 t]T when
0 ≤ t ≤ 496, and [512 0 t]T when 497 ≤ t ≤ 528.
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Figure 3: Memory trace for the SVD updating (n = 25) algorithm.
The abscissae are the numbers of datapath instructions executed,
the ordinates are memory locations. The first graph represents the
entire trace. The second graph is a detailed trace in the interval
[2200 : 9100], which corresponds to the end of the QR update and
the start of the SVD diagonalization [3]. The global maximum is
at the point (x=48848, y=2175), the rightmost on the first trace.

Step 3.4 Compute the maximum storage requirement in the block.
In this moment, there is enough information to compute the ex-

act memory size after any assignment increasing the memory (with
positive characteristic memory variation). The initial memory at
the beginning of the first loop nest is 5,291; the characteristic mem-
ory variations of the three assignments are +1, 0, and -1. Finding
the number of times a certain assignment is executed reduces to the
computation of the size of a Z-polytope [2]. The maximum storage
requirement (5,292) is reached in the first iteration (j = 16) after
assignment (1). It is the maximum value for the entire code and,
therefore, this is the minimum amount of the data storage.

3. EXPERIMENTAL RESULTS

A software framework for the computation of the data memory size
has been implemented in C++, incorporating the ideas and algo-
rithms described in this paper. For the syntax of the algorithmic
specifications, we adopted a subset of the C language (see, e.g.,
the illustrative example in Fig. 1). In addition to the computation
of the minimum memory size requirements and different statistical
data on the memory usage by the multi-dimensional signals in the
algorithmic specification, the framework can optionally generate
the variation of the memory occupancy during the execution of the
input specification. Such a memory trace is shown in Fig. 3.

Table 1 summarizes the results of our experiments, carried out
on a PC with a 1.85 GHz Athlon XP processor and 512 MB mem-
ory. The benchmarks used are: (1) a motion detection algorithm
used in the transmission of real-time video signals on data networks
[3]; (2) a real-time regularity detection algorithm used in robot vi-
sion; (3) Durbin’s algorithm for solving Toeplitz systems with n
unknowns [9]; (4) the kernel of a motion estimation algorithm
for moving objects (MPEG-4); (5) a singular value decomposition
(SVD) updating algorithm used in spatial division multiplex access
(SDMA) modulation, in beamforming, and Kalman filtering; (6)
the kernel of a voice coding application.

This tool can process large specifications in terms of number of
loop nests, lines of code, number of array references. In one of our
experiments, the tool processed a difficult example of about 900
lines of code, with 113 loop nests 3-level deep, and a total of 906

Application #Array #Scalars Memory CPU
(parameters) refs. size (sec)

Motion detection
(M=N=32, m=n=4) 72,543 2,740 2
(M=N=120, m=n=8) 11 3,749,063 33,284 16
Regularity detection 19 4,752 2,304 < 1
Durbin alg. (n=500) 27 252,499 1,249 15
Motion estimation 68 265,633 2,465 18
SVD (n=100) 87 3,045,447 34,950 26
Vocoder kernel 232 33,706 11,890 2

Table 1: Experimental results.

array references (most of them having complex indices), covering
about 20 million scalars, and yielding a total of 3,159 lattices, in
less than 6 minutes. Unlike the previous estimation techniques,
this tool performs exact determinations for procedural codes. Zhao
and Malik obtained an estimation of 1372 memory locations for
the motion detection kernel (M = N = 32, m = n = 4) [10],
whereas the correct result is 2,740 storage locations (see Table 1).

4. CONCLUSIONS

This paper has presented a non-scalar approach for computing the
minimum data storage in multi-dimensional signal processing ap-
plications. Different from past works performing only memory size
estimations, our approach can do exact evaluations even for com-
plex algorithmic specifications.
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